
[Loha, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2573-2576]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Algorithm for Ordering of Message in Mobile Computing Environment
Mr. Jayanta Loha

Assistant Professor, Department of Computer Science and Application, St. Joseph’s College, Darjeeling,
India

jayanta.sjc@gmail.com
Abstract

 Causal message ordering is required for several distributed applications. In order to preserve causal
ordering, only direct dependency information between messages, with respect to the destination process (es), need
be sent with each message. By eliminating other kinds of control information from the messages, the communication
overheads can be significantly reduced. This paper presents an algorithm that uses this knowledge to efficiently
enforce causal ordering of messages. The proposed algorithm does not require any prior knowledge of the network
communication pattern .The algorithm can be employed in a variety o f distributed computing environments. Its
energy efficiency and low bandwidth requirement make it especially suitable for mobile computing systems.

Keywords: Causal message ordering, MSS, MH, Done relation, Hand-off.

Introduction
A mobile computing system is a distributed

system consisting of a number of mobile and fixed
processing units. The fixed units referred to as a Mobile
Support Stations (MSSs), can communicate with each
other through a fixed wire line network [8]. The
geographical area of the mobile computing system is
divided into regions called cells with an MSS in each
cell. The mobile hosts (MHs) in a cell can open a
wireless communication channel with the MSS in the cell
and communicate with all the other processors in the
system through this MSS. Alternatively an MH can be
connected through an access point of the fixed wire line
network [9] for communication purposes. An MH can
move out of one cell and into another cell. In such a case
the MSSs of the old cell has to hand over the
responsibilities for the MHs communication to the MSS
of the new cell. This process is referred to as hand-off [1,
5].
 A distributed application executing in a mobile
computing environment consist of a collection of
processors such that one or more processors may be
running on each processor. The processors communicate
with each other through asynchronous message passing
with message propagation time being finite but arbitrary.
The execution of a process consists of three types of
events: message send, message delivery and internal
events. Internal events represent local computations at
the processes. In the absence of a global clock,
determining

the relative order of occurrence of events on diff-
erent processes is non-trivial.
 Controlling the executions of a distributed
application such that all events are totally ordered is
expensive. A less severe form of ordering of message
transmission and reception, called causal ordering, is
sufficient for a variety of applications like management
of replicated data, observation of a distributed system,
resource allocation, multimedia systems and
teleconferencing [10, 3, 6].
 Hence, there is a need for an implementation of
causal ordering of messages that has low communication,
computation and memory overheads [2, 4]. This paper
presents a low overhead algorithm for causal ordering of
messages. While the proposed algorithm is suitable for a
variety of distributed systems, its efficiency makes it
especially attractive for mobile computing systems.

System Model
 The application under consideration is
composed of N processors. These processes collective
execute a distributed computation. There exists a logical
communication channel between each pair of processes.
A process can send a message to either one process or a
group of processes. The group of processes to which a
process sends multicast messages need not be fixed, i.e. a
process Pi may send one multicast message to a group of
processes G1 and later another multicast message to a
different process G2. Thus, dynamic multicast groups are

[Loha, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2573-2576]

allowed where in a process can do a multicast to any
group of processes without having form groups a priori.
 However, two events occur at two different processes
cannot be determined solely on the basis of the local time
of occurrence. However information about the order of
occurrence of events can be gathered based on the causal
dependencies between them. Such dependencies can be
expressed using the done relation (�) between events.
The done relation between events has been defined in as:

• a�b, if a and b are events in the same process
and a occurred before b.

• a�b, if a is the event of sending a message M
in a process and b is the event of delivery of the
same message to another process.

• If a�b and b�c, then a�c (
i.e.”�”relation is transitive).

If a�/ b and b�/ a then a and b are said to be
concurrent and represented as a || b.
 Events a, b and c mentioned above can be message
SEND, message DELIVER or internal events of the
processes. Causal ordering of messages specifies the
relative order in which two messages can be delivered to
application process.

Basic Idea of Algorithm
 To ensure causal ordering, a message M needs to carry information about only those messages M
(M′)→SEND(M″) and SEND(M″)→SEND(M) [7].
Thus, when M reaches Pi it can be delivered to Pi only
after M′ has been delivered to Pi. Until then M is
buffered at Pi. If causal ordering of messages is enforced
between every pair of immediate causal predecessor and
successor messages, then causal ordering among all
messages will be automatically ensured due to the
transitivity of the done relation.
 Now the basic idea of underlying the algorithm is
shown in Figure below.

Fig. 1 Illustrate the basic idea of the algorithm

Therefore two kinds of information need to be
sent with each message: (i) direct predecessor messages
with respect to each destination process and (ii) sender‘s
knowledge of the most recent mutually concurrent
message from the other processes delivered to the sender.

Algorithm for Causal Ordering
 Causal ordering of messages is implemented by
the underlying system by executing the following
protocol at the time of send and reception of a message
M at Pi.

Message Send: Pi sends M to destination (M)

1. for all Pj ϵdestination (M): SEND the unique
identifier for message M of Pi’s knowledge of
the direct processor with respect to message sent
to Pk.

2. For all Pj ϵdestination (M): Future message sent
to Pj should deliver after M.

Message Reception: Pi receives message from Pj

1. Wait for messages sent to Pi constraining M
must be delivered prior to M′s delivery.

2. Delivery of M to Pi.
3. Delivery of message M from j to i.

Comparison with Related Work
 The communication overhead of previous
algorithms to implement causal ordering is high, because
at least an NXN integer matrix [6] or N – 1 vector clock
(each with N integer components) [11] are sent with
every massage.
 These matrices and vector sets contain
information about the Direct as well as transitive causal
predecessors of a message. In the proposed algorithm, a
message carries information only about its direct
predecessors with respect to each destination process.
Hence, the communication overheads are low. However,
such high overheads are incurred only when there is a
high degree of concurrency in the message
communication pattern, there exist concurrent messages
sent by each process in the system that are direct causal
predecessors of M with respect to each of its
destinations. Usually, the degree of concurrency is much

lower and the overheads are smaller.
 The computation overhead at processes, for
maintaining causal ordering are low, because processes
have to perform only a small number of simple operation
like integer comparisons and set operations at the time of
sending and delivering messages. Moreover , if a process
Pi multicasts a message M to a set of processes
destination(M), all the computation overheads for

[Loha, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2573-2576]

message send are incurred only once for the entire
multicast, regardless of the cardinality of destination
(M).
 The proposed algorithm has lower communication
overheads than existing algorithms. However there are
situation in the generalized multicasting case where
dependence information that is over and above the
minimum required to maintain causal ordering is sent
with message. Thus, if a message delivery is more than
one message hop away from Pi. Delivered, does not have
information about it.
 Casually ordered multicast message may be sent
by an MH or an MSS. If an MH needs to multicast a
message, the responsibility is handled by the MSS of the
cell in which the MH lies at the time of sending the
message. This is a conservation of the limited energy
supply of the MH.
 The mobility of nodes can lead to complications
in causal multicasting of messages. An MH that is a
destination of a message and moves from one cell to
another may not have the message delivered to it even
through the MSSs in its previous and current cell receive
the message. Also if a destination MH moves into a cell
whose MSS does not receive a copy of the message, the
MH will not have the message delivered to it. Therefore
sending the multicast message only to the MSSs of the

cells in which the target MHs are currently present may
not work. So the message should be sent to all the MSSs.

Conclusion
 Causal ordering of messages is required in a
variety of distributed application. Previous algorithms to
implement causal ordering have high communication
overheads. This is because each computation message
carries information about direct as well as transitive
dependencies between messages. Here causal ordering
needs to carry information for each message only about
(i) its direct predecessor messages with respect to each
destination process and (ii) most recent mutually
concurrent messages delivered to its sender. It has low
communication and computation overheads. It can
handle dynamically changing multicast communication
groups.
 The proposed algorithm also adapts to the
volume of traffic in the system. Simulation experiments
showed that the higher the number of messages sent
concurrently in the immediate past of a message, the
more control information the message has to carry. On
the other hand, if concurrency is low, the control
information carried by the message is smaller. Generally,
there is a positive correlation between traffic intensity
and the level of concurrency: high traffic corresponds to

greater concurrency and low traffic corresponds to low
concurrency.
 The efficiency of the algorithm makes it
especially suitable for mobile computing environments.
The low memory and communication overheads of the
implementation satisfy the low energy consumption and
low available bandwidth constraints of mobile computing
systems. The low algorithm can be used to implement
casually ordered multicasting of messages in mobile
computing environments such that exactly one copy of a
message is delivered to every destination node.

References

[1] A. Acharya and B. R. Badrinath. Delivering Multicast
Messages in Network with Mobile Hosts. In
Proceeding of the 13th International N Conference on
Distributed Computing Systems, pages 292-299,
IEEE, 1993.

[2] S. Alagar and S. Venkatesan. Causally Ordered
Message delivery in Mobile Systems. In Proceeding of
the Workshop on Mobile Computing Systems and
Applications, pages 169-174, Santa Cruz, December
1994.

[3] R. Baldoni. A. Mostefaoui and M. Raynal. Efficient
Causally Ordered Communications for Multimedia
Real-Time Applications. In Proceedings of the 4th
International Symposium on High Performance
Distributed Computing, pages 140-147, Washington,
D. C., August 1995.

[4] K. Birman. A. Schiper and P. Stephenson. Light weight
Causal and Atomic Broadcast. ACM Transactions on
Computer systems, 9(3):272- 314, 1991.

[5] Ravi Prakash, Michel Raynal and Mukesh Singhal. An
Adaptive Causal Ordering Algorithm Suited to
Mobile Computing Environments.

[6] M.Raynal, A.Schiper and S.Toueg. The causal ordering
abstraction and a simple way to implement it.
Information Processing Letters, 39(6): 343-350,1991.

[7] A.Mostefaoui and M.Raynal. Causal Multi casts in
Overlapping Groups:Towards a 4th Low Cost
Approach. In Proceedings of the IEEE International
Conference on Future Trendsin Distributed Computing
Systems, pages136-142, Lisbon, September1993.

[8] T.Imielinski and B.R.Badrinath,Mobile Wireless
Computing. Communication of the ACM,37(10):19-
28,1994. M.Callendar.International Standards for
Personal Communications.In proceeding of the 39th
IEEE vehicularTechnology Conference,pages 722-
728,1989.

[9] F. Adelstein and M. Singhal. Real-Time Causal
Message Ordering in Multimedia Systems.I
Proceedings of the 15th International Conference on

[Loha, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2573-2576]

Distributed Computing Systems, pages 36-43, June
1995.

[10] A. Schiper, J. Eggli, and A. Sandoz. A New Algorithm
to Implement Causal Ordering.In Proceedings of the
3rd International Workshop on Distributed
Algorithms, LNCS-392,pages 219-232, Berlin, 1989.
Springer.

